AHEART September 46/
نویسندگان
چکیده
Korthuis, Ronald J., Dean C. Gute, Frank Blecha, and Chris R. Ross. PR-39, a proline/arginine-rich antimicrobial peptide, prevents postischemic microvascular dysfunction. Am. J. Physiol. 277 (Heart Circ. Physiol. 46): H1007– H1013, 1999.—We and others have previously demonstrated that intestinal ischemia-reperfusion (I/R) is associated with a large increase in oxidant production that contributes to microvascular barrier disruption in the small bowel. It has been suggested that the bulk of tissue damage during reperfusion can be attributed to adherent, activated neutrophils. From these observations, we hypothesized that pretreatment with PR-39, an endogenous neutrophil antibacterial peptide that is also a potent inhibitor of the neutrophil NADPH oxidase, would prevent postischemic oxidant production and the development of oxidant-dependent sequelae to I/R such as increased venular protein leakage. To test this postulate, oxidant production, venular protein leakage, leukocyte adhesion, and leukocyte emigration were monitored during reperfusion in control (no ischemia) rat mesenteric venules and in mesenteric venules subjected to I/R alone or PR-39 1 I/R. Treatment with a single intravenous bolus injection of PR-39 (administered at a dose to achieve an initial blood concentration of 5 μM) abolished I/R-induced leukocyte adhesion and emigration in vivo. In vitro studies indicated that PR-39 prevents platelet-activating factor-induced neutrophil chemotaxis as well as phorbol myristate acetate (PMA)-stimulated intercellular adhesion molecule-1 expression by cultured endothelial cells. PR-39 pretreatment of rat neutrophils also blocked PMA-stimulated neutrophil adhesion to activated endothelial monolayers. In vivo, I/R was associated with a marked and progressive increase in oxidant production and venular protein leakage during reperfusion, effects that were abolished by PR-39 treatment. The results of this study indicate that PR-39 completely abolishes postischemic leukocyte adhesion and emigration. The time course for inhibition of oxidant production by PR-39 suggests that its antiadhesive properties account for this effect of the peptide. PR-39 may thus be therapeutically useful for prevention of neutrophil adhesion and activation during the postischemic inflammatory response.
منابع مشابه
AHEART September 46/
DOUGLAS R. SEALS, EDITH T. STEVENSON, PAMELA P. JONES, CHRISTOPHER A. DESOUZA, AND HIROFUMI TANAKA (With the Technical Assistance of Cyndi Long and Mary Jo Reiling) Human Cardiovascular Research Laboratory, Center for Physical Activity, Disease Prevention, and Aging, Department of Kinesiology and Applied Physiology, University of Colorado, Boulder 80309, and Department of Medicine, Divisions of...
متن کاملAHEART September 46/
FERENC DOMOKI,1,3 ROLAND VELTKAMP,1,2 NISHADI THRIKAWALA,1 GREG ROBINS,1 FERENC BARI,1,3 THOMAS M. LOUIS,4 AND DAVID W. BUSIJA1 1Department of Physiology and Pharmacology and 2Stroke Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1083; 3Department of Physiology, Albert Szent-Györgyi Medical University, Szeged, H-6720 Hungary; 4Department of Anato...
متن کاملAHEART September 46/
Gyenge, C. C., B. D. Bowen, R. K. Reed, and J. L. Bert. Transport of fluid and solutes in the body. I. Formulation of a mathematical model. Am. J. Physiol. 277 (Heart Circ. Physiol. 46): H1215–H1227, 1999.—A compartmental model of shortterm whole body fluid, protein, and ion distribution and transport is formulated. The model comprises four compartments: a vascular and an interstitial compartme...
متن کاملAHEART October 46/4
F. COCEANI,1 Y.-A. LIU,1 E. SEIDLITZ,1 L. KELSEY,1 T. KUWAKI,3 C. ACKERLEY,2 AND M. YANAGISAWA4 1Integrative Biology Programme and 2Division of Pathology, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8; 3Department of Physiology, School of Medicine, Chiba University, Chiba, 260-8670 Japan; and 4Howard Hughes Medical Institute and Department of Molecular Genetics, University of...
متن کاملAHEART November 46/5
RAGAVENDRA R. BALIGA,1 DAVID R. PIMENTAL,1 YOU-YANG ZHAO,2 WILLIAM W. SIMMONS,1 MARK A. MARCHIONNI,3 DOUGLAS B. SAWYER,1 AND RALPH A. KELLY1 1Cardiovascular Division, Brigham and Women’s Hospital and Harvard Medical School, Boston 02115; 3Cambridge Neurosciences, Cambridge, Massachusetts 02139; and 2Department of Medicine, University of California at San Diego School of Medicine, La Jolla, Cali...
متن کاملAHEART September 46/
Parthimos, D., D. H. Edwards, and T. M. Griffith. Minimal model of arterial chaos generated by coupled intracellular and membrane Ca21 oscillators. Am. J. Physiol. 277 (Heart Circ. Physiol. 46): H1119–H1144, 1999.—We have developed a mathematical model of arterial vasomotion in which irregular rhythmic activity is generated by the nonlinear interaction of intracellular and membrane oscillators ...
متن کامل